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Nonlinear solutions in the form of squares and rolls are investigated for Rayleigh–
Bénard convection in an infinite-Prandtl-number fluid enclosed between two symmet-
ric slabs. It is found that the heat transfer depends strongly on the thickness and
thermal conductivity of the slabs, but hardly on the planform of convection. Examples
of stability regions of rolls are calculated, showing that for certain slab selections,
rolls remain stable at even larger Rayleigh numbers than with fixed temperatures at
the boundaries. The region of stable squares is restricted by a zigzag and a long-
wavelength cross-roll instability in addition to a new three-dimensional instability. As
the slab conductivity is increased, the stability region of the squares shrinks onto a
point located well above the critical point for the onset of convection. For a small
range of slab conductivities, stability regions for squares and rolls both exist for the
same set-up. In the present calculations, the regions never overlap. An example, where
both patterns are stable at the same Rayleigh number, provides an explanation for
the co-existence of rolls and squares where transparent slabs with a low thermal
conductivity were applied.

1. Introduction
Rayleigh–Bénard convection in a thin horizontal fluid layer enclosed between heat-

conducting slabs is an ideal and simple pattern-generating configuration. A large
amount of work has been devoted to the special case where the temperature is
kept constant at the fluid boundaries, which can be experimentally achieved by
applying well-conducting slabs. At the onset of convection, the stable pattern is then
two-dimensional rolls, their fully nonlinear stability regions were first calculated by
Busse (1967). Finite-Prandtl-number fluids yield more complex regions owing to the
viscous instabilities (references may be found in Getling 1998). Frick, Busse & Clever
(1983) showed that squares are unstable, and Clever & Busse (1996) found that hex-
agons are stable for supercritical Rayleigh numbers as low as 3000.

When taking into account slabs of finite heat conductivity, squares may be a stable
pattern as well. This was first predicted for weakly supercritical Rayleigh–Bénard
convection by Busse & Riahi (1980) and Proctor (1981), and the corresponding
wavenumber restrictions by Hoyle (1993) for the asymptotic case of poorly conducting
slabs, where the wavenumber becomes a small parameter. Correspondingly, various
combinations of slab thicknesses and conductivities have been reported, references
may be found in Holmedal, Tveitereid & Palm (2005), who concluded that the
instability mechanisms are always similar to those reported by Hoyle (1993), and
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that hexagons and all other patterns involving more than two modes are always un-
stable. Experimentally, evidence of the squares was reported by Le Gal, Pocheau &
Croquette (1988).

The weakly nonlinear perturbation techniques are restricted to small Rayleigh num-
bers and degenerates for slab conductivities corresponding to the border between
stable rolls and squares. For cases of infinitely thick heat-conducting slabs, fully
nonlinear solutions and their heat transfer and stability regions were reported by
Westerburg & Busse (2001). They found that the stability region shrinks onto the
critical point for onset of convection as the slab the conductivity decreases. In an
experiment they observed the coexistence of squares and rolls.

Realistic set-ups involving symmetric slabs of finite thickness and thermal conduct-
ivity are considered in the current investigation. Stability regions and heat transfer
are calculated for both rolls and three-dimensional squares. Of special interest are
cases with slab properties close to the transition between stable rolls and stable
squares, where the weakly nonlinear theory does not apply. Beyond the weakly
nonlinear range, hexagons are likely to be another stable solution not included here.
Furthermore, infinitely large Prandtl numbers are assumed.

2. Mathematical formulation
A fluid layer of infinite horizontal extent and of constant depth h is considered. The

thermal conductivity k and the thermal diffusivity κ are constant properties. The co-
efficient of thermal expansion β describes the linear density dependence on temper-
ature. The fluid is bounded by two rigid heat-conducting slabs. The slabs have equal
thickness denoted by h(s), thermal conductivity k(s) and thermal diffusivity κ (s).

The fluid is heated from below and cooled from above. The temperature is fixed at
the outer boundaries of the slabs, and the temperature difference between these two
boundaries is �T (positive).

To describe the geometry and the flow, Cartesian co-ordinates (x, y, z) are used.
The z-axis is directed upwards, with the origin located at the centre of the fluid layer.
In the governing equations, the density is regarded as constant except in the buoyancy
term. A simple hydrostatic solution exists with a linear temperature variation in the
vertical direction. The hydrostatic temperature difference between the top and the
bottom of the fluid layer, �T (f ), then is:

�T (f ) =
K�T

2H + K
, (2.1)

where

H = h(s)
/
h, K = k(s)

/
k. (2.2)

A temperature perturbation θ , a pressure perturbation p and a fluid motion v of
the hydrostatic solution is considered. The corresponding temperature perturbations
in the slabs are denoted θ (l) and θ (u). The temperatures are made dimensionless by
�T (f ). By using h, h2/κ , κ/h and κνρ0/h2 as units of length, time, velocity and
pressure, respectively, the equations are made non-dimensional. For cases of infinite
Prandtl number, the horizontal components of the dimensionless velocity may be
written as

(vx, vy, vz) =

(
∂2ψ

∂x∂z
,

∂2ψ

∂y∂z
, −∂2ψ

∂x2
− ∂2ψ

∂y2

)
, (2.3)
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The governing dimensionless equations then take the form

∇4ψ − Ra θ = 0, (2.4)

∇2θ − ∂2ψ

∂x2
− ∂2ψ

∂y2
=

∂θ

∂t
+

∂2ψ

∂z∂x

∂θ

∂x
+

∂2ψ

∂z∂y

∂θ

∂y
−

(
∂2ψ

∂x2
+

∂2ψ

∂y2

)
∂θ

∂z
, (2.5)

∇2θ (l) =
κ

κ (s)

∂θ

∂t

(l)

, (2.6)

∇2θ (u) =
κ

κ (s)

∂θ

∂t

(u)

, (2.7)

with boundary conditions

z = ±
(

1
2

+ H
)
: θ (l,u) = 0, (2.8)

z = ± 1
2
: ψ =

∂ψ

∂z
= 0, θ = θ (l,u),

∂θ

∂z
= K

∂θ

∂z

(l,u)

. (2.9)

Here Pr and Ra are the Prandtl number and the Rayleigh number, respectively,
defined by

Pr =
ν

κ
, Ra =

gβ�T (f )h3

κν
. (2.10)

Note that �T (f ) is the temperature difference across the fluid layer, as defined in (2.1),
the hydrostatic solution.

A steady, two-dimensional solution of (2.4)–(2.7) and (2.8)–(2.9) can be obtained
through the Galerkin expansions

X =
∑
kln

AklnXn(z, αkl) exp(iα(kx + ly)). (2.11)

Here X denotes θ , θ (u), θ (l) or ψ . Each expansion term corresponds to a wavelength
which is expressed

αkl = α
√

k2 + l2. (2.12)

The z-dependent trial function Xn denotes θn, θ (u,l)
n or ψn, which must satisfy the

boundary equations (2.8) and (2.9). Akln = A∗
−k−ln to ensure real-valued solutions, with

* denoting the complex conjugate. The summation runs over all integers −∞ < k, l < ∞
and 1 � n< ∞.

The linear equations (2.6) and (2.7) for θ (l,u)
n can be solved analytically for each

mode (k, l):

θ (u)
n (z, αkl) = −θn

(
1
2
, αkl

)sinh
(
αkl

(
z − 1

2
− H

))
sinh(αklH )

, (2.13)

θ (l)
n (z, αkl) = θn

(
− 1

2
, αkl

)sinh
(
αkl

(
z + 1

2
+ H

))
sinh(αklH )

. (2.14)

The expansion functions

θn(z, αkl) =
αklK sin

(
nπ

(
z + 1

2

))
+ nπ tanh(αklH ) cos

(
(n − 1)π

(
z + 1

2

))
αklK + nπ tanh(αklH )

(2.15)

satisfy the boundary conditions (2.9). Using the expansions (2.11), an exact steady
solution for each expansion term ψn(z, αkl) can be found as the solution of the
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equation: (
d2

dz2
− α2

kl

)2

ψn = Ra θn. (2.16)

Steady solutions are obtained by solving (2.5) by the use of a Galerkin method
resulting in a bilinear system of equations for the unknown coefficients Akln, which
can be solved numerically using a Newton–Raphson method. The procedure is similar
to that described in Busse (1967).

To determine the stability of the stationary solution infinitesimal disturbances are
imposed.

X̃ =
∑
kln

ÃklnXn(z, α̃kl)exp(i(mα + b)x + i(lα + d)y + σ t). (2.17)

Here X̃ is a linear perturbation corresponding to X, where X denotes θ , θ (u), θ (l)

or ψ , as before. Furthermore, α̃kl =
√

(kα + b)2 + (lα + d)2 is the wavelength of the
disturbance mode. Following Busse (1967), a Galerkin procedure similar to that for
the stationary equations is adopted, resulting in an eigenvalue problem, where the
growth rate σ assumes the role of an eigenvalue. The largest real part of the growth σ

can be determined as a function of b and d . For the case of perfectly conducting slabs,
the zigzag and the cross-roll instabilities only involve real-valued σ . In our approach,
a linear eigenvalue problem can be obtained only when κ/κ (s) = 0. Note however, that
the stability regions obtained using this simplification are valid also for any finite
values of κ/κ (s) provided that the exponential growth, σ , is real-valued corresponding
to non-oscillatory instabilities. Additional oscillatory instabilities might exist for some
finite value of κ/κ (s).

3. Steady solutions and their heat transfer
The square cell may be approximately regarded as the intersection of rolls with

orthogonal axes. It follows from the symmetries of the solution that no fluid passes
through the vertical cell boundaries and the vertical diagonal planes of the cell. The
flow and temperatures of a square cell are illustrated by figure 1, for which K = 0.4 and
H = 2. The flow is spreading out from the up-flow in the cell centre and is downwardly
directed at the vertical cell side boundaries. The temperature distribution indicates
rather strong horizontal temperature gradients in the fluid. The stagnation point
locally above the rising fluid is warmer than the stagnation point below the sinking
fluid, whereas the temperatures above the sinking fluid and below the rising fluid are
approximately equal to the boundary temperatures of the hydrostatic solution.

In order to investigate the dependency of the heat transfer on the thickness and
conductivity of the slabs, some selected results showing the Nusselt number as a
function of the Rayleigh number will be presented. The heat transport of stationary
solutions is described by the Nusselt number

Nu = 1 −
(

∂θ

∂z

)
z=±1/2

, (3.1)

where the overbar denotes the horizontal average. The unperturbed motionless
solution yields Nu= 1, which corresponds to the heat transfer of the hydrostatic
solution. The second part of the Nusselt number may be referred to as the convective
heat transport. Note that the definition of the Nusselt number, (3.1), is based
on a different temperature scale from the one applied by Westerburg & Busse
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(a) 

(b ) 

Figure 1. Velocities and isotherms for squares for (K, H )= (0.4, 2). The wavenumber is the
critical, αc = 1.6, and Ra= 5000. The two-dimensional vertical sections shown here are planes
through which no fluid passes. Seen from above these are: (a) the diagonal square cell section;
(b) the square cell sidewall. The difference in value between neighbouring dimensionless
isotherms is 0.1.

(2001), who used the difference between the horizontal mean of the temperature
at the fluid boundaries. For the special case of symmetric slabs, this scale may be
expressed (1 − 2θ (1/2))�T (f ). It can be shown that their Nusselt number is equal
to Nu/(1 − 2θ (1/2)) for cases of symmetric slabs. Even though their scale is of the
right order of magnitude, it is inconvenient to apply since it depends implicitly on
the realized flow, whereas �T (f ) simply involves the prescribed temperatures outside
the slabs and the conductivities and the thicknesses of the slabs and the fluid layer.
It can be shown that

lim
K→0

Nu = 1 for finite H, (3.2)

lim
H→∞

Nu = 1 for finite K. (3.3)

This reflects that if the fluid layer is very thin compared to the slabs, or the slabs are
poorly conducting compared to the fluid, the convection in the fluid layer will not
contribute to the overall heat transfer.

Figure 2 shows Nu − 1 as a function of Ra − Rac for symmetric slabs with H =0.1.
The two-dimensional rolls and the three-dimensional squares exhibit approximately
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Figure 2. The Nusselt number as a function of Ra − Rac for cases where the slabs are
one-tenth as thick as the fluid layer (H = 0.1), and with conductivities as indicated in the
figure. The solid (dashed) lines denote squares (rolls).

0.5

H = 0.1

2

10

Ra – Rac

100

10–1

10–2

10–3

102 103 104

N
u 

– 
1

Figure 3. The Nusselt number as a function of Ra − Rac for cases where the slabs have the
same conductivity as the fluid (K =1). The selected values for the thickness of the slabs are as
indicated in the figure. The solid (dashed) lines denote squares (rolls).

the same heat transport. The differences are small, but notable. In agreement with
the findings of Frick et al. (1983) who considered two perfectly conducting slabs,
it is found here that the asymptotic power law for the Nusselt–Rayleigh number
relationship appears to be distinctly different for squares than for rolls at Rayleigh
numbers larger than about 5000. The Nusselt number is larger for squares than for
rolls for all the slab selections at sufficiently large Rayleigh numbers. This distinction
almost disappears for the slab selections with lower conductivities. For small Ra the
stable solution yields the largest Nu (in agreement with the weakly nonlinear theory,
Holmedal et al. 2005). In figure 3, the conductivity of the slabs is chosen equal to the
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conductivity of the fluid. The Nusselt number decreases significantly with increased
thickness of the slabs.

It follows from the discussion above that the heat transfer in the case of infinitely
thick slabs by Westerburg & Busse (2001) is not at all influenced by the convection
in the fluid layer. From (3.3), it is realized that the change of their Nusselt number
is related entirely to the change of their temperature scale, namely the difference
between the mean temperatures at the fluid boundaries, which depends not only
on the prescribed outer temperature difference, �T , but also on the steady solution
itself. Our findings reveal that the dependency on the slab thickness and thermal
conductivity is indeed strong.

4. Stability regions
A selection of Busse balloons for the case of two symmetric slabs of thickness

H = 0.1 is shown in figure 4. The disturbance wavenumber of the cross-roll instability
is close to the critical wavenumber except at the largest Rayleigh numbers. The
balloons are shifted towards smaller wavenumbers with decreased conductivity of the
slabs. As was found for cases of infinitely thick slabs by Westerburg & Busse (2001),
the balloons shrink towards the critical point and vanish for sufficiently small K . The
rolls are replaced by squares at K = 0.2356 (calculated using the weakly nonlinear
theory). The results with H = 0.1 suggest that cases of thin poorly conducting slabs
might remain stable at even larger Rayleigh numbers. In such cases, only one slab
parameter is necessary, namely K/H . This limit will be omitted here, because the
numerical implementation has not been designed to cope with this limit with a
sufficient accuracy.

Westerburg & Busse (2001) showed, for cases of infinitely thick slabs, that the
largest stability region was obtained with perfectly conducting slabs. Accounting for
their use of a definition of the Rayleigh number based on the difference between the
mean temperatures at the fluid–slab interfaces does not change this. Their Rayleigh
number may be expressed (1 − 2θ (1/2))Ra. It becomes equal to the one adopted here
for the case of perfectly conducting boundaries.

As was pointed out by Frick et al. (1983), it is sufficient to consider disturbances
with wavenumbers b and d in a triangular region enclosed by the lines b = d , d =0
and d = α/2 when studying the stability of the square solutions. It turns out that the
most unstable perturbations are always found for small values of b and d .

Figure 5 shows the stability region for convection in the form of squares for a
slab selection corresponding to the experiment by Le Gal et al. (1988). Certainly,
squares are the preferred pattern for this case according to weakly nonlinear theory
(Holmedal et al. 2005). However, their measured wavenumber, α = 2.5 at Rayleigh
numbers around 2000, is located on the right-hand side outside the stability region in
the figure. The disagreement is most probably due to a finite Prandtl number (Pr = 7)
in their experiment.

Three types of instability delineate the stability boundaries of stable squares in
figure 5. The long wavelength cross-roll instability (LW-CR) and the square-zigzag
instability (SZZ) have been calculated by the stability analysis with the Ginzburg–
Landau equations as described in Holmedal et al. (2005) and are included with the
dashed lines in the figure. Note that the SZZ boundary vanishes to the left immediately
above the critical point. However, the behaviour very close to the critical point for
the onset of convection agrees with the predictions of the weakly nonlinear theory,
as can be seen from the enlargement of the region close to the critical point inserted
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Figure 4. Two-dimensional rolls are stable in the closed regions. The thickness of the slabs is
H =0.1 and K is as indicated on the figure. The wavenumber (d) of the most rapidly growing
disturbance (cross-roll) is indicated by the dashed curves in the figure.

in figure 5. The LW-CR boundary is predicted correctly by the weakly nonlinear
theory in the range (Ra − Rac)/Rac < 0.2. In addition, a new type of instability is
revealed at the upper left-hand boundary of the balloon. This instability is labelled
the roll-competition instability (RC) because it energizes the planform modes of the
squares, Ã101, Ã−101, Ã011 and Ã0−11.

In figure 6, the largest growth rates of the eigensolutions are shown for perturbations
with d = b. The point (Ra, α) = (5600, 1.82) is considered for slabs with H = 2 and
K =0.4 . This choice of the parameters corresponds to a point placed right above
the RC boundary in figure 5. Considering very small values of d/α, the three largest
eigenvalues are close to each other but distinct. The largest growth is obtained for
d → 0. The second largest eigenvalue (LW-CR) and the largest eigenvalue (RC) are
merged into a complex conjugate pair of eigenvalues as d/α is increased above a
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Figure 5. Three-dimensional squares are stable in the closed region. The two slabs are
symmetric with H = 2 and K = 0.4 (Plexiglas and water). The long wavelength cross-roll
instability (LW-CR), the square-zigzag instability (SZZ) and a new instability, which we
denote the ‘roll-competition’ instability (RC), yield the stability boundaries. The dashed lines
show the boundaries predicted by weakly nonlinear theory. An enlargement of the region close
to the critical point is included.

certain value. The real part of this pair of eigenvalues remains positive in a range
of small d/α. Thus, instabilities with both real and complex growth rates may arise
within a finite bandwidth.

The closer the approach to the RC boundary, the smaller is the region where
the two largest eigenvalues are distinct. Exactly at the RC boundary, the LW-CR
instability and the RC instability exchange places. Below the RC boundary, the region
of distinct real eigenvalues increases again, the LW-CR instability being the largest
(stable).

Westerburg & Busse (2001) reported the coexistence of rolls and squares in an
experiment with silicon oil of a high Prandtl number and with transparent slabs.
Their set-up corresponds to K =1.18 and H =2.5. In figure 7, such regions are shown
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Figure 6. The dependency of the largest eigenvalues on d/α along the line d = b. A point
of unstable squares right outside the RC instability boundary is considered, for the slab
parameters H = 2 and K = 0.4 (Plexiglas and water), and (Ra, α) = (5600, 1.82) as indicated by
an arrow in figure 5. The dashed line denotes the absolute value of the imaginary part of the
complex conjugate pair of eigenvalues with the real part labelled A. This pair of eigenvalues
splits into two real-valued eigenvalues A1 and A2. The eigenvalue labelled C is the largest one
for d/α > 0.44.

for the case of infinitely thick slabs with K = 1.1. Rolls are stable in a region above
the critical point, Rac <Ra < Ra2, where Ra2 is the uppermost Rayleigh number for
stable rolls. In the figure, the lowermost Rayleigh number for stable squares is smaller
than Ra2. Thus, for a small range of Rayleigh numbers below Ra2, rolls and squares
may both be stable at the same set-up, but for slightly different wavenumbers, because
these two stability regions in the figure are distinct. Note that this overlap of the
wavenumbers is in the same range of Rayleigh numbers as reported by Westerburg &
Busse (2001). Note also that the relatively narrow bandwidths of stable wavenumbers
for rolls and for squares are very close to each other and to αc. Hence, a hysteretic
transition is not necessary to explain their coexistence.

Figure 8 shows four regions for stable squares, for which the thickness of the slabs
is H =0.1. The conductivities are all smaller than K = 0.2356, which is the largest
value where the critical point for onset of convection is a part of the stability region
for squares. Hence, the weakly nonlinear theory is valid, as indicated by the dashed
curves in the figure. The stability region in the figure which contains the largest
Rayleigh number for stable squares is obtained for K =0.1. The heights of the
stability regions decrease and the widths increase for the selections with lower values
of K than this. The LW-CR instability displaces the RC instability progressively as
the conductivity of the slabs is reduced. However, the RC instability is still present
for the case considered with K =0.001.

Figure 9 indicates two more examples of stability regions of rolls and squares for
the same slab thickness H = 0.1 as in figure 8. Since here the conductivities (K = 0.262
and 0.269) are larger than K =0.2356, the onset of convection is in the form of rolls.
The tiny region of stable squares obtained with K = 0.269 represents about the largest
value of K , for which this pattern is stable when H = 0.1. Note that the Busse balloon
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Figure 7. The stability regions of three different solutions for the case with infinite thickness
and K = 1.1. The motionless basic state is stable below the neutral stability curve, Ra0. At
supercritical Rayleigh numbers the rolls are stable in the Busse balloon located right above
the critical point. Squares are stable in the uppermost closed region.

and the stability region of squares in these two cases are separated by an interval of
the Rayleigh number, within which none of these patterns are stable.

5. Summary and conclusions
Steady squares and rolls in Rayleigh–Bénard convection between symmetric slabs,

their heat transfer and their stability have been calculated numerically. The heat
transfer depends strongly on the thickness and the conductivity of the slabs. That the
stable pattern yields the strongest heat transfer is true only in the weakly nonlinear
range.

Examples of stability regions of both rolls and squares have been calculated. In
one case, with a slab that is one tenth as thick as the fluid layer and with a ten times
better thermal conductivity, the largest Rayleigh number where the rolls are still
stable is larger than for the case of perfectly conducting boundaries. As the thermal
conductivity of the slabs is reduced, the stability region of the rolls shrinks onto the
critical point for onset of convection.
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Figure 8. Squares are stable in the closed regions. For all the four cases the slabs
aresymmetric with H = 0.1. The conductivities of the slabs, K , are indicated in the figure.

In agreement with weakly nonlinear theory (Holmedal et al. 2005) the long
wavelength cross-roll instability and the square zigzag instability are responsible
for the stability borders in the lower part of the stability region of three-dimensional
squares. A new type of instability occurs at larger Rayleigh numbers. At a thermal
conductivity of the slabs slightly above the limit where stable rolls appear, the stability
region of squares shrinks onto a point at a supercritical Rayleigh number.

Examples are calculated where the rolls are stable close to onset and squares are
stable in a closed region at slightly larger Rayleigh numbers. However, no overlap
between such regions has been found in the calculated examples. This provides an
explanation for the observed coexistence of squares and rolls by Westerburg & Busse
(2001).

Finally, some future perspectives: dependent on the slab properties, combinations
of stable rolls, squares and hexagons are possible solutions in the early nonlinear
regime. Additional viscous instabilities will occur at finite Prandtl numbers. The large
stability regions obtained with the thin slabs are an interesting topic. The set-up
investigated here is simple and relevant for experimental conditions. It gives rise to
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Figure 9. The stability regions of the steady solutions for slabs with H =0.1. Solid lines
denote K = 0.262 and dashed lines denote K = 0.269. The motionless basic state is stable
below the neutral stability curve Ra0. Rolls are stable in the Busse balloon, which is located
right above the critical point. Squares are stable in the uppermost closed region.

a rich varity of instabilities and may still serve as an ideal case for many future
investigations of instability mechanisms and pattern formation.
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